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ABSTRACT 

 
Deep learning significantly enhances network attack detection by identifying and 

analyzing patterns and anomalies in network traffic. Traditional network security 

methods fail to recognize evolving threats; On the other hand, deep learning models 

can detect such threats. The important characteristics of these models are their ability 

to learn from data continuously, improve detection accuracy, and adapt to new attack 

vectors. However, the main disadvantage is the challenges of implementing network 

security. These challenges include the need for substantial computational resources 

and expertise. Despite these hurdles, deep learning provides a powerful and dynamic 

approach to network security, offering real-time threat detection and significantly 

bolstering cybersecurity defenses. In this document, we propose an idea of using 

image channels to find abnormal patterns in network traffic. We implemented this 

idea in a deep learning architecture and evaluated it on a test dataset to check the 

anomaly pattern detection for DNS spoofing attacks. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 
Network security comprises measures adopted to protect the resources and integrity of a 

computer network [22]. It protects underlying network infrastructure from unauthorized 

access, misuse, or theft. Network security involves creating a secure infrastructure for devices, 

applications, and users in a secure manner [15]. Network security is critical to modern 

information technology to protect integrity, confidentiality, and data availability as it is 

transmitted across computer networks. Over time, the dependency on decentralization 

networks has increased, amplifying the need for robust network security measures to 

safeguard sensitive information and ensure uninterrupted services. In addition, network 

security is one of the important elements of cybersecurity. In Fig 1, important elements of 

cybersecurity are depicted. 

 
Figure 1: Important Elements of Cyber Security 
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As networks expanded and the Internet became ubiquitous, the range of severity of threats 

increased. As a result, more advanced solutions are necessitated. In figure 2, traditional 

network security measures are shown. 

 
Figure 2: Traditional Network Security measures 

 

Detecting network attacks plays a vital role in maintaining computer networks' security, 

integrity, and functionality. In Table 1, the key reasons are elaborated. 

 

 
Table 1:Key reasons in detecting network attacks 

# Key reason  

1 Protection of sensitive data Early detection of network attacks helps in 

safeguarding sensitive and confidential 

information such as personal data, financial 

information, proprietary business data. 

2 Minimizing Downtime Network attacks can lead to service disruptions 

and operational downtime. Detecting attacks 

early allows for prompt response and mitigation, 

thereby, minimizing the impact and ensuring 

continuety. 

3 Maintaining Trust and Reputaion Network attacks can result in substantial 

financial losses due to data breaches, and 

ransomware demands. Early detection helps to 

mitigate these financial aids. 

4 Complinace with regulation Organizations that fail to protect their network 

and data can suffer server reputational damage. 

Detecting and mitigating attacks helps maintain 

the organization’s reputation and trustworthiness. 

5 Preventing spread of malware Nework attacks can often involve the spread of 

malware within the network or other networks. 

Early detection helps eradicate malware before it 

can propagate. 

6 Protecting critical infrastructure Many network attacks target critical infrastrucure 

such as power grids, healthcare systems, and 
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financial services. Early detection of these 

attacks is vital to protect public dafety, health 

and economy stability. 

7 Enhancing incident responses Early detection improves the effectiveness of 

incident response teams by providing timely 

alerts and information. 

8 Identifying Vulnerabilities Early detection can hellp identify vulnerabilities 

and weaknesses in an organization’s defense. 

 

 
Detecting network attacks can be approached using traditional methods and neural network-

based techniques. In Figure 3, traditional methods and neural network-based approaches are 

shown. 

 
Figure 3:Traditional techniques and Neural network techniques 

 

 
Traditional approaches for finding network attacks, like signature-based detection, rely on 

predefined patterns [47], whereas neural network approaches require large datasets for 

training [27]. Neural networks can potentially detect novel attacks through their ability to 

leave complex patterns, while traditional methods are often limited to known attack signatures 

[33]. Neural networks, especially deep learning methods can be more computationally 

intensive compared to traditional methods [10]. Traditional methods are generally easier to 

implement but may require frequent updates. Neural network approaches involve more 

complex implementations and tuning, but they can provide more advanced detection 

capabilities [1]. 

Signature-based detection relies on well-known patterns of malicious activity, often related to 

signatures, to identify attacks. Each signature corresponds to a specific type of attack or 
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malware. This method is effective in detecting known threats with high accuracy; however, it 

is ineffective against new unknown attacks (zero-day threats) and variants of known attacks 

that do not limit existing signatures. In anomaly-based detection approach, a baseline of 

normal network behavior is established, and deviations from this baseline are identified as 

potential threats [17]. Anomaly-based detection can detect navel attacks that deviate from 

normal patterns. On the other hand, false-positive rates due to legitimate activities that may 

appear anomalous can be considered as disadvantages. Heuristic-based detection uses 

heuristic rules or algorithms to identify suspicious behavior or anomalies based on 

characteristics of known threats.  

This method is more flexible than signature-based methods and can detect new variants of 

attacks. Conversely, this approach still results in false positives, the same as the anomaly 

detection method, and may not catch all novel threats. 

Supervised learning models involve training a neural network on labeled datasets where 

network traffic features are associated with known attack types or data and normal behavior 

[43]. This approach can achieve high accuracy with sufficient labeled data and can generalize 

to new data that is similar to the training set [3]. Using this approach requires large amount of 

labeled data, which can be difficult to obtain. Methods that use unsupervised learning models 

use networks to identify patterns in network traffic without pre-labeled data [4]. Techniques 

like clustering are often used in this method. Although these methods can detect new and 

unknown attacks by identifying outliers and anomalies in the data, it can be less accurate than 

supervised models. It may require significant turning and validation to reduce false positives 

[11]. Approaching based on deep-learning models, utilize complex neural network 

architectures such as convolutional neural networks (CNNs), or Recurrent Neural Networks 

(RNNs)  to analyze network traffic data [44].  

These approaches can model complex patterns and dependencies in the data, potentially 

leading to higher detection accuracy. One important disadvantage of these approaches is their 

requirement of substantial computational resources  and large database for training.   
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CHAPTER 2 

 

 

 

    BACKGROUNDS 

 

 

 
Network attack detection plays a critical role in securing not only infrastructures but also 

organizations. In this chapter, we provide background on network attack detection techniques and 

neural networks. Additionally, we review related works. 

 
2.1 Existing Network Attack detection methods 

 

Network attack detection is a crucial component of cybersecurity to identify and mitigate malicious 

activities within a network. The field encompasses various techniques and methodologies, each 

designed to address different types of threats. In table 2, a summary of existing network attack 

detection methods is demonstrated.  

 
Table 2:Network attack detection methods 

# Detection 

Method 

Method  Pros Cons 

1 Signature-based 

detection 

Predefined patterns or signature 

of known attacks 
• Effective against 

known attacks 

• Low false 

positive rate for 

known attack 

types 

• Ineffective 

against new, 

unknown 

attacks 

• Requires 

constant 

updates 

2 Anomaly-based 

Detection 

Establishing a baseline for 

typical network behavior and 

recognizing any deviations as 

possible dangers 

• Capable of 

detecting 

unknown or 

novel attack 

• Can identif 

subtle attacks 

• High false 

positive rate 

• Require 

significant 

computational 

resources 

3 Behavioral-

based detection 

Simlar to anomaly-based 

detection, this method focues on 

behavior of users and systems 

• Effective in 

detecting inside 

threats 

• Can uncover 

• High false 

positive rate 

• Requires a 

deep 
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complex attacks understanding 

of normal 

behavior 

4 Heuristic-based 

Detection 

Using heuristic rules derived 

from the analysis of known 

attack strategies and technique ( 

a mixture of signature and 

anomaly-based approach) 

• Flexible and 

adaptable 

• Can detect 

variants of 

known attacks 

• Potential to 

false-positive 

• Require 

reqular tuning 

and updates 

5 Machine 

Learning-based 

detection 

Identify patterns suggestive of 

attacks by analyzing large 

volumes of network data. 

• Highly effective 

at identifying 

complex 

patterns and 

emerging threats 

• Can improve 

detection 

accuracy over 

time 

• Requires large 

datasets 

• Complexity in 

algorithm 

selection and 

model training 

6 Deep learning-

based detection 

Using neural networks with 

many layers 

This approach is used for more 

sophisticated pattern recognition 

• Superior 

performance in 

detecting 

complex and 

previously 

unseen attacks 

• Capable of 

handling large-

scale data 

• Extremely 

resource 

intensive 

• Interpretability 

of results can 

be challenging 

 

 
As it is obvious from table 2, each network attack detection has its strengths and weaknesses. 

However, in practice, network security often involves a layered approach, integrating several of these 

methods to provide robust protection against a wide range of threats.  

 

2.2  Related Works 

 

The application of neural networks in network attack detection has shown significant promise across 

various architectures, including DNNs, RNNs, CNNs, autoencoders, and hybrid models. Table 3 

collectively demonstrates the application of neural networks in detecting network attacks used in 

different researches. 

 
Table 3:Related Works 

# Research Name Research Objective 

1 Network Intrusion Detection System using Deep 

Learning Techniques [38] 

The study explored the use of deep learning techniques, 

specifically deep neural networks (DNNs), for network 

intrusion detection. 

The research demonstrated that DNNs could automatically 

learn high-level features, from raw network traffic 

data.This results in improving detection accuracy 

compared to traditional machine learning methods. 

2 RNNIDS: Enhancing network intrusion detection 

systems through deep learning [46] 

In this study, RNNs (Recurrent Neural Networks)  

employed to capture temporal dependencies in network 

traffic data. This stduy showed that RNN, could 

effectively model the sequential nature of events, leading 
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to better detection of complex attacks like (DDoS).   

3 A survey of CNN-based network intrusion 

detection [34] 

This research investigated that application of 

convolutional neural network (CNNs) for network 

intrusion detection.  

The study proved that CNNs chich traditionally used for 

image recognition could be adopted to analyze network 

traffic data, achieving high detection rates against various 

types of attacks. 

4 Autoencoder-based network anomaly detection [7] This study utilized Long Short-Term Memory (LSTM) 

based autoencoders to detecting network anomalies. 

The autoencoders were trained to reconstruct normal 

network traffic, and the deviations from this 

reconstruction, were played as potential anomalies. 

5 A hybrid deep learning model for efficient 

intrusion detection in big data environment [16] 

This research proposed a hybrid model combining CNNs, 

and LTSMs to leverage the traffic data. The hybrid modle 

autoperfomed individual deep learning models in 

detecting a variety of network attacks with higher 

accuracy and low false positive role. 

 
Machine learning-based methods have some differences from neural networked-based detection 

approaches. Examples of machine learning methods, including decision trees, support vector 

machines (SVM), Random Forests, K-nearest neighbors, and Naive Bayes, are effective for 

structured data with a clear feature set, and they are relatively simple and easy to interpret [3]. 

Machine-learning methods may struggle with complex patterns and relationships in data and 

generally lower accuracy for sophisticated attacks. They are good for known attack types and finding 

linear patterns. On the other hand, neural network-based methods, including DNNs, RNNs, CNNs, 

Autoencoders, and GANs, can learn complex, non-linear relationships, which provide high accuracy 

for known and unknown attacks due to deep feature learning [9]. Their important weakness is that 

they require large datasets and significant computational resources, which makes them complex to 

design and train. Neural network-based methods are superior in detecting complex and previously 

unseen attack patterns.  

 

2.3  An Overall of Neural Networks 

 

A neural network is a computational model inspired by how biological neural networks in the human 

brain process information [18]. It contains of interconnected nodes (neurons) that work together to 

solve specific problems. Neural networks are used for tasks that involve pattern recognition, 

classification, and prediction [53]. This makes them well-suited for detecting anomalies and attacks in 

network traffic [51]. Basic components of neural networks are neurons (nodes), layer, weights and 

biases, and activation functions. Neurons (nodes) are the fundamental units of a neural network that 

recieve input, process it, and pass it to the next layer. Each neuron performs a weighted sum of its 

input and applies an application function. The input layer is the first layer that receives the raw data 

(e.g., network traffic features). Hidden layers are intermediate layers where the actual processing and 
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feature extraction occur. These layers can be one or many, and their depth often determines the 

complexity of the model. The output layer is the final layer that produces the output (e.g., 

classification of network traffic as benign or malicious)[40]. Some parameters are adjusted during 

training to minimize the error in prediction and weights and determine the strength of connections 

between neurons, while biases provide additional flexibility in decision boundaries [58]. None-linear 

functions are applied to the output of each neuron to introduce non-linearity into the model [5]. 

Common activation functions include Sigmoid, torch, and ReLU (Rectified Linear Unit) [43]. There 

are different types of neural networks, including Feedforward Neural Networks (FNNs), 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Autoencoders. 

FNNs are the simplest type of cycle. In other words, information moves in one direction- from input 

to output. CNNs specialize in processing structured grid data like images. They use convolutional 

layers to extract spatial features automatically[120]. In network security, CNNs can analyze raw 

traffic data. RNNs are designed to handle sequential data by maintaining a memory of previous 

inputs. They are useful for analyzing sequences of network events or logs. Auto encoders are a type 

of neural network used for unsupervised learning of efficient coding [28]. Because they can 

reconstruct inputs and spot deviations, they are especially helpful for anomaly detection. 

Neural networks offer several advantages in pattern detection and anomaly detection. Neural 

networks, especially deep learning models, can automatically extract and learn hierarchical features 

from raw data without the need for manual feature engineering. This is particularly useful in network 

security, where relevant features may not be easily identifiable [15]. 

 

2.4  Advantages of Neural Networks 

 

Neural networks can model complex and non-linear relationships in data, which are often present in 

sophisticated attack patterns and network traffic behaviors [30]. The capability enables them to detect 

subtle and intricate anomalies that traditional linear models might miss. In addition, neural networks 

generally offer higher accuracy and better detection rates for both known and unknown threats 

compared to traditional machine learning methods. Neural networks can efficiently handle large-scale 

datasets and high-dimensional data [19]. In the context of network security, this means they can 

process vast amounts of network traffic data and identify anomalies or attack patterns in real-time 

[56] . In Fig 4. the advantages of neural networks are briefly shown.  
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Figure 4:Advantages of Neural Networks in attack detection 

 

 

2.5  An Overview of Network Attacks 

 

Network attacks are deliberate attempts to compromise the integrity, confidentiality, or availability of 

data and network resources. Common network attacks are: 

1) Dos and DDoS attacks: these attacks aim to make a network resource unavailable to its 

intended users by overwhelming it with a flood of illegitimate requests. DoS attack 

originates from a single source, while DDoS attack originates from multiple compromised 

systems, such as botnets. These attacks can lead to significant downtime and damage to 

reputation [12][24][37]. 

2) Phishing and Spear-phishing: Social engineering attacks are designed to trick individuals 

into providing sensitive information such as usernames, passwords, and credit card 

numbers. In a phishing attack, generic emails sent to a large number of people. In spear 

phishing attack, targeted attacks directed at a specific individuals or organizations. These 

attacks aimed at compromising personal and financial information or potential authorized 

access to system [55][35][42]. 

3) Man-in-the-Middle (MITM) attacks: attackers intercept and potentially alter 

communications between two parties without their knowledge. Some well-known methods 

that are used are eavesdropping and session hijacking. These attacks have large impact 

such as data theft, session hijacking, and unauthorized access to sensitive information 

[54].  
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4) Malware attacks: Malware is a malicious software designed to infiltrate, damage, or 

disable computers, and networks. There are different types of malwares including viruses, 

worms, trojans, ransomware, and spyware [6]. 

Network attacks are divers and continually evolving, posing significant threats to organizations and 

individuals. Detecting network attacks is a complex and challenging task due to evolving cyber 

threats and the sophistication of attackers. In figure 5, some key challenges in detecting network 

attacks are shown. 

 

 

 
Figure 5:Challenges in detecting network attacks 

 
2.6  Neural Network Architectures 

 
Designing a neural network architecture for network attack detection involves several considerations 

to ensure the model can effectively identify and classify malicious activities. Neural network 

architectures are used in detecting network attacks vary in complexity and application, leveraging 

different types of normal networks to address the unique challenges posted by network security. In 

table 4 several common and advanced neural network architectures that are used in detecting network 

attacks is given. 
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Table 4: Common Neural Network Architectures 

# Name Structures Applications Advantages Limitations 

1 FNNs Composed of an 

input layer, one or 

more hidden layers 

and an output layer 

with no cycles or 

loops [14] 

Basic intrusion 

detection system 

(IDS) where 

simple patterns in 

the data needed to 

be identified 

• Simplicity 

• Speed 

Requires significant 

feature engineering 

(They cannot 

inherently capture 

complex features) 

2 CNNs Consist of 

convolutional layers, 

pooling layers, and 

fully connected 

layers [26] 

Used for 

processing and 

analyzing data like 

traffic data 

represented in a 

grid or image-like 

format 

• Can automatically 

learn hierarchical 

features from raw 

data 

• Useful for 

detecting patterns 

and anomalies in 

new network data 

log files 

Require data to be 

formatted 

3 RNNs Designed for handle 

sequential data with 

loops that allow 

information to 

present 

Ideal for 

examining logs or 

time series data 

from network 

traffic that contain 

sequences of 

network events 

Can capture temporal 

patterns in sequential 

data 

 

4 LSTMs A type of RNN Ideal for detecting 

sophisticated 

attacks by 

analyzing long 

sequences of 

network data 

• Can learn long-

term dependencies 

and retain 

information over 

long period 

• Suitable for 

complex temporal 

patterns in network 

traffic 

More complex and 

computationally 

intensive than simple 

RNNs and FNNs 

5 GRUs A variant of RN 

similar to RSTMs 

but with a simpler 

structure having 

feature gates 

Used for similar 

purposes as 

LSTMs but with 

potentially faster 

training times 

Faster to train and less 

computationally 

intensive 

More complex than 

basic RNNs and 

FNNs 

6 Autoencoders Consists of an 

encoder that 

compresses the input 

data into a slower-

dimensional 

representation and a 

decoder that 

reconstructs the 

original data from 

these representations 

Anomaly detection • Can learn from 

unlabeled data, 

which is abundant 

in network traffic 

• Effective at 

detecting 

anomalies where 

reconstruction 

error is high 

 

Prone to overfitting 

7 GANs consists of two 

neural networks that 

are trained 

concurrently: a 

discriminator and a 

Generating 

Synthetic network 

traffic to train 

other models or for 

detecting 

• Can generate 

realistic network 

traffic for training 

and testing 

purpose 

• Training GANs 

can be 

challenging due 

to instability 
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generator. The 

discriminator 

attempts to discern 

between real and 

fake samples, while 

the generator 

attempts to produce 

realistic data 

samples. 

anomalies by 

identifying data 

that discriminator 

finds difficult to 

classify. 

• Effective in 

detecting 

anomalies 

• Computationally 

intensive 

 
As it is obvious from table 4, each neural network architecture offers various strengths and 

weaknesses for detecting network attacks. The choice of architecture depends on the specific 

requirement of the detection systems such as type of data, complexity of attack patterns and the need 

for real-time processing. 

 

2.7  Neural Network Architecture Design Considerations 

 

Designing a neural network for network attack detection involves several considerations and choices 

regarding the architecture, the architecture, activation functions, train algorithms, and other 

parameters. Network traffic data requires normalization or scaling to ensure that features have similar 

ranges; categorical features such as protocol types or port numbers need to be encoded, typically one-

hot encoding or label encoding. Selecting relevant features from the raw data is crucial. This can 

include packet size, time intervals, IP addresses, port numbers, and more. Regarding the architecture 

design, the shape of the input layer is defined based on the preprocessed features. The number and 

type of hidden layers depend on the complexity of the task and the amount of data. Layer type 

(CNNs, RNNs, LSTMs, GRUs) is defined based on the characteristics and parameters such as 

number of units, return sequences, number of filters, and so on. The other adjustments (such as 

activation functions and evaluation metrics) can be made based on specific requirements and dataset 

characteristics. 

 

2.8  An Overview of Image Processing 

 

Image processing involves the manipulation and analysis of images to extract useful information or 

enhance their quality. It plays a fundamental role in computer vision, medical imaging, and graphic 

design, with applications ranging from facial recognition to satellite imagery. An image is composed 

of multiple channels, each representing a color or intensity level. For example, a typical RGB (Red, 

Green, Blue) image has three channels: one for each primary color. By adjusting these channels, 

images can be modified in terms of color balance, brightness, contrast, and more. Grayscale images, 
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on the other hand, have just one channel, representing shades of gray. Our main idea is to take 

advantage of the concept of image channels. We can view network traffic as different layers and 

apply image processing techniques to identify anomalies. This leads to easily manipulating network 

traffics and extract anomalies. In the next chapter, we apply our method to detect DNS spoofing 

attack anomalies in targeted network traffic and present the results. 
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CHAPTER 3 

 

 

 

    DNS Spoofing Attack 

 

 

 
3.1  An Overview of DNS Spoofing Attack 

 

DNS cache poisoning (also known as DNS spoofing) is a type of cyber-attack where corrupt DNS 

data is inspired into the DNS resolver’s cache, causing the name server to return an incorrect IP 

address and deviating traffic to malicious site [36]. The attack threatens the integrity of DNS, which 

is a critical component of the Internet infrastructure responsible for translating human readable 

domain names into IP addresses that computers use on the network. In figure 6 key characteristics of 

DNS cache poisoning attack is shown. 

 

 
Figure 6:Key Characteristics of DNS Cache Poisoning Attack 

 
3.2   Raw Data Collection 

 

Raw data collection and generation are fundamental steps in the development of neural network 

models for network attack detection. They involve gathering and creating data that represents network 
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activities, both benign and malicious. This data serves as the fundamental of training, validating and 

testing machine learning algorithms. The data can be provided either by collecting or generating 

where each has different methods. In figure 7 these methods are shown. 

 

 

 
Figure 7: Data Collection and Generation Methods 

 
Network traffic can be captured in real-time using tools such as Wireshark, tcpdump, and bro (now 

Zech). Each packet traversing the network is monitored and recorded by these tools, which provide 

detailed information about each one. Network devices, like routers, firewalls, and servers, generate 

log files that contain records of network activities [25]. These logs can provide insight into 

connection events, traffic flows, and detected anomalies. By analyzing these logs, researchers can 

identify patterns and behaviors associated with both normal usage and malicious activities. Publicly 

available datasets like KDD Cup 1999, DARPA intrusion, evaluation dataset, and CICIDS provide 

labeled network traffic data for various attack scenarios [45].  

Simulated attacks are one of the methods used to generate data. Simulating network attacks in 

controlled environments allows for the generation of synthetic data [52]. These simulations can 

include various attacks, such as DDoS, phishing, and malware infections. In addition, Simulation 

provides the advantage of generating labeled data when the nature of each data point (normal traffic 

vs. specific traffic) is known [48]. Automated tools can generate large volumes of network traffic that 

include both normal and malicious activities [59]. These tools help to create comprehensive datasets 

that cover a wide range of scenarios, ensuring that the machine learning models are exposed to 

diverse types of network activities [49]. Data augmentation techniques involve creating new training 

examples by modifying existing data. These techniques can include duplicating samples or making 
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slight alterations to the data. High-quality data with minimal noise and error is essential for training 

reliable neural network models. Data preprocessing steps, such as cleaning and normalization, help 

improve data quality [8]. Additionally, the dataset should be representative of the real-world 

environment where the model will be deployed, including a balanced mix of both normal and 

malicious activities [39]. 

For our case study, we used protocol fuzzing for data generation. Web protocol fuzzing can generate 

large variety of malicious network packets at a fast speed. In this method, all are labeled as malicious 

because they are generated from a desired network attack. In our case, all data generated and stored in 

order to create the dataset.   

 

3.3   Labeling DNS Sessions 

 

 
Labeling DNS sessions involves categorizing and tagging DNS traffic to distinguish between 

different types of network activities. This process is crucial for various network security tasks 

including monitoring, anomaly detection, and forensic analysis [23]. DNS session labeling enables 

more effective tracking of network activity by categorizing [57]. In addition, facilitates the 

identification of anomalies and potential security threats by comparing current traffic against labeled 

data [31]. Labeling DNS sessions has some challenges. DNS traffic can be volumes, requiring 

efficient methods to label and analyze large dataset attack patterns that evolve over time, 

necessitating continuous updates to labeling criteria and methods. Ensuring high accuracy in labeling 

to avoid false positives and negatives is another challenge in labeling DNS sessions. 

In our case study, the malicious and benign raw data have already been separated during protocol 

fuzzing. As a result, we are not required to do another extra process. 

 

3.4   Feature Extraction and Data Sample Representation 

 

 
Feature extraction and data sample representation are crucial steps in the process of detecting network 

attacks, such as DNS cache poisoning. These steps involve transforming raw network data into a 

structured format that can be used as input for machine learning models. Feature extractions involve 

selecting and transforming raw data into meaningful attributes that can be used by machine learning 

algorithms. For network attack detection, features can be derived from various sources, such as 

network traffic, logs, and system events [32]. In Figure 8, key steps in feature extraction are shown. 
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Figure 8: Key Steps in Feature Extraction 

 
Data sample representation involves organizing the extracted features into a format suitable for input 

into machine learning models. Data samples can be represented in a tabular format, sequential format, 

or graph-based format. Each representation has its own characteristics that make it suitable for each 

model. Sequential formats are suitable for models like RNNs and LSTMs, where data is represented 

as sequences of events. Graph-based representation is useful for GNNs and detecting complex attack 

patterns. 

In our case study, 32 bytes are chosen from every DNS packet instead of a whole packet. These 32 

bytes include IP layer, UDP layer, and part of a DNS layer. After the packet processing, every packet 

is represented as fixed-length sequences of 32 integer numbers ranging from 0 to 255 (a 32-integer 

vector). For the packets with variable length, we applied sliding window to convert it to a fixed-

length sequences.  

In fig 9, the python code for applying window sliding is shown. 

  

 

 

 

 

 

 

 

 

 

Figure 9: Python code for applying window sliding 

 

3.5   Dataset Construction 

 

This section involves several steps to ensure collected data is relevant, accurate, and useful for the 

intended analysis. In figure 9 general is covered. 

def window_sliding(x_list, window_size, window_step): 

 x = [] 

 For i in range(len(x_list)): 

  Line = x_list[i] 

  n = len(line) 

  for j in range (0 , n – window_size + 1, window_step) 

   if j+window_size <= len(line) 

    x.append(line[j:j+window_size]) 

   else: 

    x.append(line[n-window_size:n]) 

 return np.array(x) 
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Figure 10: Data construction Process 

 
Regarding the DNS cache poisoning attack, the dataset includes real-network traffic captured over a 

specific period. This ensures the data represents actual usage patterns and potential attack sessions. In 

addition to real traffic, simulated attack scenarios are generated and included in the dataset. This 

helps to create a comprehensive dataset that includes various attack patterns and methods. Key 

features that are selected include attributes like source and destination IP addresses, DNS query types, 

and response time. Each entry in the dataset is labeled as either normal traffic or attack traffic. The 

data undergoes a preprocessing step such as normalization and noise filtering. By doing this, the data 

fed into the machine-learning models is made sure to be clean and well-structured. The data is split 

into training, validation, and test sets to allow for robust model training and evaluation. This split 

helps in assessing the model’s performance on unseen data.  

 
3.6 Model Architecture 

 
The model architecture focuses on the details of the structure and components of the neural network 

used for detecting network attacks, particularly focusing on the choice of layers, activities, functions, 

and other design patterns. The model architecture is crucial because the effectiveness of a neural 

network heavily relies on how well its architecture is suited to the specific task. The purpose of the 

input layer is to receive the raw input data. The purpose of hidden layers is to process and transform 

the input data through various computations to extract meaningful patterns. This combination of 

layers and patterns helps the model effectively learn to distinguish between normal and malicious 

network traffic, addressing the specific challenges posed by network attack detection. In fig 11 our 

purposed construction is shown.  

 

Figure 11: Proposed Architecture 
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3.7   Parameter Tuning 

 

 
The process of parameter tuning involves altering the hyperparameters of neural network models to 

enhance their ability to detect network attacks [13]. Common hyperparameters include learning rate, 

batch size, number of epochs, number of layers/neurons, dropout rate, and activation functions. The 

learning rate controls the step size during the gradient descent optimization. A small learning rate 

convergence with a large learning rate can cause the model to converge too quickly. Batch size 

determines the number of training samples used to calculate the gradient descent in each iteration. 

Smaller batch sizes can lead to noisy updates, while layer batch sizes provide more stable updates but 

require more memory. The number of epochs is a measurement of how many times a complete pass 

through the entire training dataset has been completed. More epochs can improve learning but may 

also increase the risk of overfitting. An important issue is adjusting the depth (number of layers) and 

width (number of neurons per layer) of the neural network to find a suitable architecture that captures 

the complexity of data without overfitting [50]. Drop rate is a regularization technique to prevent 

overfitting by randomly dropping units during training [21]. The drop rate specifies the proportion of 

units to drop. Activation functions such as ReLU, sigmoid, or Tanh are applied to each neuron's 

output [40]. The choice of activation functions affects the learning dynamics and model performance 

[21]. Different tunning methods can be applied. Exhaustive search over a predefined set of 

hyperparameters is called Grid search [54]. It evaluates every combination, which can be 

computationally expensive but thorough. In the random search tuning method, randomly sampled 

hyperparameters from specific distributions are more efficient than grid search and often find good 

hyperparameters with fewer evaluations. Bayesian optimization uses a probabilistic model to predict 

the performance of different hyperparameter settings and choose the next set to evaluate [2]. Methods 

like hypergradient descent adjust hyperparameters based on their gradients, similar to how model 

parameters are optimized. Either model tuning or automated tools can be used for hyperparameter 

tuning [29]. In our case study set corresponds to the sliding window, and the number of units in layers 

are considered as hyper parameters.  

 

3.8   Model Deployment 

 
The deployment of a model for DNS attack detection involves integrating the trained neural network 

into a live environment where it can monitor and analyze real-time DNS traffic. In fig 10, Python 

code for model building is shown.  
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Figure 12: Python code for Model building 

  3.9   Evaluation Results 

 

This section presents the findings from testing and validating the proposed methods or systems 

against established metrics. Fig 11 Covers aspects in the context of DNS cache poisoning attack 

detection.  

 

 
Figure 9:Performance Metrics 

 

 

def create_network(input_size, layer_dims, filter_sizes, dropout_prob): 

input_layer = tf.keras.layers.Input(shape=(input_size, 32, 8), name='InputLayer') 

  x = tf.keras.layers.Conv2D(filters=layer_dims[0], kernel_size=filter_sizes[0],  

padding='same', activation='relu', name='ConvBlock1')(input_layer) 

  x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2),  

                   padding='same', name='PoolBlock1')(x) 

     

     x = tf.keras.layers.Conv2D(filters=layer_dims[1], kernel_size=filter_sizes[1],  

                               padding='same', activation='relu', name='ConvBlock2')(x) 

     x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2),  

                                     padding='same', name='PoolBlock2')(x) 

     

x = tf.keras.layers.Flatten(name='FlattenLayer')(x) 

x = tf.keras.layers.Dense(layer_dims[2], activation='relu', name='DenseLayer')(x) 

x = tf.keras.layers.Dropout(rate=dropout_prob, name='DropoutLayer')(x) 

output_layer = tf.keras.layers.Dense(2, activation='softmax',    

name='OutputLayer')(x) 

model = tf.keras.models.Model(inputs=input_layer, outputs=output_layer, 

name='NetworkModel') 

return model 
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Accuracy is one of the performance metrics. This metric shows the ratio of the number of correct predictions to 

the total number of predictions. Recall metric, answers the question “of all instances that were actually 

positive, how many were predicted correctly?”. On the hand, precision metric defines “Of all insurances that 

were predicted as positive, how many were actually positive?”. F1 score metric combines precision and recall 

into a single metric [41]. Based on our proposed architecture, and evaluation on dataset, results are shown in 

table 5. 

 

Table 5:Extracted Results 

Data Set Accuracy Precision Detection rate F1 Score 

Training 0.9888 0.9755 0.9756 0.9765 

Test 0.9766 0.9661 0.9891 0.9971 

 

These results illustrate how well our model performs according to the aforementioned metrics, and provide 

insights into areas where the model excels or may need improvement. The comprehensive evaluation helps in 

understanding the model’s strengths and weaknesses, guiding further refinements and optimizations.
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CHAPTER 4 

 

 

 

CONCLUSION 

 

In this document, we introduced the idea of taking advantage of the concept of image channels and 

employ an image processing technique in order to find network anomalies. we have evaluated the 

performance of our proposed architecture using various metrics to ensure a comprehensive 

assessment. Accuracy, recall, precision, and F1 score have been utilized to gauge the effectiveness of 

our model in making correct predictions. The presented results demonstrate the effectiveness of our 

model based on these metrics. Our analysis reveals that the proposed architecture performs well in 

terms of accuracy and precision, while also maintaining a strong balance between recall and precision 

as indicated by the F1 score. However, the detailed evaluation also uncovers areas for potential 

improvement. Overall, the comprehensive assessment has validated the robustness of our proposed 

architecture while providing valuable insights for future refinements. This evaluation sets the stage 

for continued development and optimization of the model, with the goal of enhancing its performance 

and applicability in real-world scenarios. 
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