

Middle East Technical University

Informatics Institute

Using Deep Learning in Detecting Network Attacks

Advisor Name: Prof. Dr. Nazife Baykal (METU)

Student Name: Arsalan Vahi

(Cyber Security)

June 2024

TECHNICAL REPORT

METU/II-TR-2024-

Orta Doğu Teknik Üniversitesi

Enformatik Enstitüsü

Using Deep Learning in Detecting Network Attacks

Danışman Adı: Prof. Dr. Nazife Baykal

(ODTÜ)

Öğrenci Adı: Arsalan Vahi

(Siber Güvenlik)

Ocak 2024

TEKNİK RAPOR

ODTÜ/II-TR-2024-

REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Internal Use) 2. REPORT DATE

26.07.2024

3. TITLE AND SUBTITLE

Using Deep Learning in Detecting Network Attacks

4. AUTHOR (S)

Arsalan Vahi

5. REPORT NUMBER (Internal Use)

METU/II-TR-2024-

6. SPONSORING/ MONITORING AGENCY NAME(S) AND SIGNATURE(S)

Non-Thesis Master’s Programme, Department of Cyber Security, Informatics Institute, METU

Advisor: Prof. Dr. Nazife Baykal Signature:

7. SUPPLEMENTARY NOTES

8. ABSTRACT (MAXIMUM 200 WORDS)

Deep learning significantly enhances network attack detection by identifying and analyzing
patterns and anomalies in network traffic. Traditional network security methods fail to recognize
evolving threats; On the other hand, deep learning models can detect such threats. The important
characteristics of these models are their ability to learn from data continuously, improve
detection accuracy, and adapt to new attack vectors. However, the main disadvantage is the
challenges of implementing network security. These challenges include the need for substantial
computational resources and expertise. Despite these hurdles, deep learning provides a powerful
and dynamic approach to network security, offering real-time threat detection and significantly
bolstering cybersecurity defenses. In this document, we propose an idea of using image channels
to find abnormal patterns in network traffic. We implemented this idea in a deep learning
architecture and evaluated it on a test dataset to check the anomaly pattern detection for DNS
spoofing attacks.

9. SUBJECT TERMS

Deep Learning, Network Attacks, DNS Spoofing Attacks,

Anomaly Detection

10. NUMBER OF PAGES

22

i

Using Deep Learning in Detecting Network Attacks

ABSTRACT

Deep learning significantly enhances network attack detection by identifying and

analyzing patterns and anomalies in network traffic. Traditional network security

methods fail to recognize evolving threats; On the other hand, deep learning models

can detect such threats. The important characteristics of these models are their ability

to learn from data continuously, improve detection accuracy, and adapt to new attack

vectors. However, the main disadvantage is the challenges of implementing network

security. These challenges include the need for substantial computational resources

and expertise. Despite these hurdles, deep learning provides a powerful and dynamic

approach to network security, offering real-time threat detection and significantly

bolstering cybersecurity defenses. In this document, we propose an idea of using

image channels to find abnormal patterns in network traffic. We implemented this

idea in a deep learning architecture and evaluated it on a test dataset to check the

anomaly pattern detection for DNS spoofing attacks.

ii

TABLE OF CONTENTS

ABSTRACT i

TABLE OF CONTENTS ii

LIST OF TABLES iv

LIST OF FIGURES vi

LIST OF ABBREVIATIONS vi

CHAPTERS

1. INTRODUCTION 1

2. BACKGROUND 5

 2.1. Ex is t ing Network At tack Detec t ion Me thods 5

 2.2. Related Works 6

 2.3. Neura l Networks

7

 2.4. Advan tages o f Neura l Networks
8

 2.5. An Overv iew of Network At tacks

 9

 2.6. Neura l Network Arch i tec tu re

 10

 2.7. Neura l Network Arch i tec tu re Des ign cons idera t ions

 12

 2.8. An Overv iew of Image P rocess ing

 12

3. DNS Spoofing Attack 14

3.1. An Overview of DNS Spoofing Attack 14

iii

3.2. Raw Data Collection 14

3.3. Labeling DNS Sessions 16

3.4. Feature Extraction and Data Sample Representation 16

3.5. Dataset Construction 17

3.6. Model Architecture 18

3.7. Parameter Tunning 19

3.8. Model Deployment
19

3.9. Evaluation Results

20

4. CONCLUSION
22

REFERENCES
23

iv

LIST OF FIGURES

Figure 1: Important Elements of Cyber Security

Figure 2: Traditional Network Security Measures

Figure 3: Traditional Techniques and Neural Network Techniques

Figure 4: Advantages of Neural Networks in Attack Detection

Figure 5: Challenges in Detecting Network Attacks

Figure 6: Key Characteristics of DNS Cache Poisoning Attack

Figure 7: Data Collection and Generation Methods

Figure 8: Key Steps in Feature Extraction

Figure 9: Python Code for Applying Window Sliding

Figure 10: Data Construction Process

Figure 11: Proposed Architecture

Figure 12: Python Code for Model Building

Figure 13: Performance Metrics

v

LIST OF TABLES

Table 1: Key Reasons in Detecting Network Attacks

Table 2: Network Attack Detection Methods

Table 3: Related works

Table 4: Common Neural Network Architectures

Table 5: Extracted Results

LIST OF ABBREVIATIONS

IDS Intrusion Detection System

IPS Intrusion Protection System

CNN Convolutional Neural Networks

RNN Recurrent Neural Networks

DNN Deep Neural Networks

DDoS Distributed Denial of Services

LSTM Long Short-Term Memory

GAN Generative Adversarial Networks

ReLU Rectified Linear Unit

FNN Feedforward Neural Networks

DoS Denial of Service

MITM Man In The Middle

GRU Gated Recurrent Unit

vi

DNS Domain Name System

IP Internet Protocol

GNN Graph Neural Network

DARPA Defense Advanced Research Projects

Agency

CICDS Canadian Institute for Cybersecurity

Intrusion Detection System

UDP User Datagram Protocol

1

CHAPTER 1

INTRODUCTION

Network security comprises measures adopted to protect the resources and integrity of a

computer network [22]. It protects underlying network infrastructure from unauthorized

access, misuse, or theft. Network security involves creating a secure infrastructure for devices,

applications, and users in a secure manner [15]. Network security is critical to modern

information technology to protect integrity, confidentiality, and data availability as it is

transmitted across computer networks. Over time, the dependency on decentralization

networks has increased, amplifying the need for robust network security measures to

safeguard sensitive information and ensure uninterrupted services. In addition, network

security is one of the important elements of cybersecurity. In Fig 1, important elements of

cybersecurity are depicted.

Figure 1: Important Elements of Cyber Security

2

As networks expanded and the Internet became ubiquitous, the range of severity of threats

increased. As a result, more advanced solutions are necessitated. In figure 2, traditional

network security measures are shown.

Figure 2: Traditional Network Security measures

Detecting network attacks plays a vital role in maintaining computer networks' security,

integrity, and functionality. In Table 1, the key reasons are elaborated.

Table 1:Key reasons in detecting network attacks

Key reason

1 Protection of sensitive data Early detection of network attacks helps in

safeguarding sensitive and confidential

information such as personal data, financial

information, proprietary business data.

2 Minimizing Downtime Network attacks can lead to service disruptions

and operational downtime. Detecting attacks

early allows for prompt response and mitigation,

thereby, minimizing the impact and ensuring

continuety.

3 Maintaining Trust and Reputaion Network attacks can result in substantial

financial losses due to data breaches, and

ransomware demands. Early detection helps to

mitigate these financial aids.

4 Complinace with regulation Organizations that fail to protect their network

and data can suffer server reputational damage.

Detecting and mitigating attacks helps maintain

the organization’s reputation and trustworthiness.

5 Preventing spread of malware Nework attacks can often involve the spread of

malware within the network or other networks.

Early detection helps eradicate malware before it

can propagate.

6 Protecting critical infrastructure Many network attacks target critical infrastrucure

such as power grids, healthcare systems, and

3

financial services. Early detection of these

attacks is vital to protect public dafety, health

and economy stability.

7 Enhancing incident responses Early detection improves the effectiveness of

incident response teams by providing timely

alerts and information.

8 Identifying Vulnerabilities Early detection can hellp identify vulnerabilities

and weaknesses in an organization’s defense.

Detecting network attacks can be approached using traditional methods and neural network-

based techniques. In Figure 3, traditional methods and neural network-based approaches are

shown.

Figure 3:Traditional techniques and Neural network techniques

Traditional approaches for finding network attacks, like signature-based detection, rely on

predefined patterns [47], whereas neural network approaches require large datasets for

training [27]. Neural networks can potentially detect novel attacks through their ability to

leave complex patterns, while traditional methods are often limited to known attack signatures

[33]. Neural networks, especially deep learning methods can be more computationally

intensive compared to traditional methods [10]. Traditional methods are generally easier to

implement but may require frequent updates. Neural network approaches involve more

complex implementations and tuning, but they can provide more advanced detection

capabilities [1].

Signature-based detection relies on well-known patterns of malicious activity, often related to

signatures, to identify attacks. Each signature corresponds to a specific type of attack or

4

malware. This method is effective in detecting known threats with high accuracy; however, it

is ineffective against new unknown attacks (zero-day threats) and variants of known attacks

that do not limit existing signatures. In anomaly-based detection approach, a baseline of

normal network behavior is established, and deviations from this baseline are identified as

potential threats [17]. Anomaly-based detection can detect navel attacks that deviate from

normal patterns. On the other hand, false-positive rates due to legitimate activities that may

appear anomalous can be considered as disadvantages. Heuristic-based detection uses

heuristic rules or algorithms to identify suspicious behavior or anomalies based on

characteristics of known threats.

This method is more flexible than signature-based methods and can detect new variants of

attacks. Conversely, this approach still results in false positives, the same as the anomaly

detection method, and may not catch all novel threats.

Supervised learning models involve training a neural network on labeled datasets where

network traffic features are associated with known attack types or data and normal behavior

[43]. This approach can achieve high accuracy with sufficient labeled data and can generalize

to new data that is similar to the training set [3]. Using this approach requires large amount of

labeled data, which can be difficult to obtain. Methods that use unsupervised learning models

use networks to identify patterns in network traffic without pre-labeled data [4]. Techniques

like clustering are often used in this method. Although these methods can detect new and

unknown attacks by identifying outliers and anomalies in the data, it can be less accurate than

supervised models. It may require significant turning and validation to reduce false positives

[11]. Approaching based on deep-learning models, utilize complex neural network

architectures such as convolutional neural networks (CNNs), or Recurrent Neural Networks

(RNNs) to analyze network traffic data [44].

These approaches can model complex patterns and dependencies in the data, potentially

leading to higher detection accuracy. One important disadvantage of these approaches is their

requirement of substantial computational resources and large database for training.

5

CHAPTER 2

 BACKGROUNDS

Network attack detection plays a critical role in securing not only infrastructures but also

organizations. In this chapter, we provide background on network attack detection techniques and

neural networks. Additionally, we review related works.

2.1 Existing Network Attack detection methods

Network attack detection is a crucial component of cybersecurity to identify and mitigate malicious

activities within a network. The field encompasses various techniques and methodologies, each

designed to address different types of threats. In table 2, a summary of existing network attack

detection methods is demonstrated.

Table 2:Network attack detection methods

Detection

Method

Method Pros Cons

1 Signature-based

detection

Predefined patterns or signature

of known attacks
• Effective against

known attacks

• Low false

positive rate for

known attack

types

• Ineffective

against new,

unknown

attacks

• Requires

constant

updates

2 Anomaly-based

Detection

Establishing a baseline for

typical network behavior and

recognizing any deviations as

possible dangers

• Capable of

detecting

unknown or

novel attack

• Can identif

subtle attacks

• High false

positive rate

• Require

significant

computational

resources

3 Behavioral-

based detection

Simlar to anomaly-based

detection, this method focues on

behavior of users and systems

• Effective in

detecting inside

threats

• Can uncover

• High false

positive rate

• Requires a

deep

6

complex attacks understanding

of normal

behavior

4 Heuristic-based

Detection

Using heuristic rules derived

from the analysis of known

attack strategies and technique (

a mixture of signature and

anomaly-based approach)

• Flexible and

adaptable

• Can detect

variants of

known attacks

• Potential to

false-positive

• Require

reqular tuning

and updates

5 Machine

Learning-based

detection

Identify patterns suggestive of

attacks by analyzing large

volumes of network data.

• Highly effective

at identifying

complex

patterns and

emerging threats

• Can improve

detection

accuracy over

time

• Requires large

datasets

• Complexity in

algorithm

selection and

model training

6 Deep learning-

based detection

Using neural networks with

many layers

This approach is used for more

sophisticated pattern recognition

• Superior

performance in

detecting

complex and

previously

unseen attacks

• Capable of

handling large-

scale data

• Extremely

resource

intensive

• Interpretability

of results can

be challenging

As it is obvious from table 2, each network attack detection has its strengths and weaknesses.

However, in practice, network security often involves a layered approach, integrating several of these

methods to provide robust protection against a wide range of threats.

2.2 Related Works

The application of neural networks in network attack detection has shown significant promise across

various architectures, including DNNs, RNNs, CNNs, autoencoders, and hybrid models. Table 3

collectively demonstrates the application of neural networks in detecting network attacks used in

different researches.

Table 3:Related Works

Research Name Research Objective

1 Network Intrusion Detection System using Deep

Learning Techniques [38]

The study explored the use of deep learning techniques,

specifically deep neural networks (DNNs), for network

intrusion detection.

The research demonstrated that DNNs could automatically

learn high-level features, from raw network traffic

data.This results in improving detection accuracy

compared to traditional machine learning methods.

2 RNNIDS: Enhancing network intrusion detection

systems through deep learning [46]

In this study, RNNs (Recurrent Neural Networks)

employed to capture temporal dependencies in network

traffic data. This stduy showed that RNN, could

effectively model the sequential nature of events, leading

7

to better detection of complex attacks like (DDoS).

3 A survey of CNN-based network intrusion

detection [34]

This research investigated that application of

convolutional neural network (CNNs) for network

intrusion detection.

The study proved that CNNs chich traditionally used for

image recognition could be adopted to analyze network

traffic data, achieving high detection rates against various

types of attacks.

4 Autoencoder-based network anomaly detection [7] This study utilized Long Short-Term Memory (LSTM)

based autoencoders to detecting network anomalies.

The autoencoders were trained to reconstruct normal

network traffic, and the deviations from this

reconstruction, were played as potential anomalies.

5 A hybrid deep learning model for efficient

intrusion detection in big data environment [16]

This research proposed a hybrid model combining CNNs,

and LTSMs to leverage the traffic data. The hybrid modle

autoperfomed individual deep learning models in

detecting a variety of network attacks with higher

accuracy and low false positive role.

Machine learning-based methods have some differences from neural networked-based detection

approaches. Examples of machine learning methods, including decision trees, support vector

machines (SVM), Random Forests, K-nearest neighbors, and Naive Bayes, are effective for

structured data with a clear feature set, and they are relatively simple and easy to interpret [3].

Machine-learning methods may struggle with complex patterns and relationships in data and

generally lower accuracy for sophisticated attacks. They are good for known attack types and finding

linear patterns. On the other hand, neural network-based methods, including DNNs, RNNs, CNNs,

Autoencoders, and GANs, can learn complex, non-linear relationships, which provide high accuracy

for known and unknown attacks due to deep feature learning [9]. Their important weakness is that

they require large datasets and significant computational resources, which makes them complex to

design and train. Neural network-based methods are superior in detecting complex and previously

unseen attack patterns.

2.3 An Overall of Neural Networks

A neural network is a computational model inspired by how biological neural networks in the human

brain process information [18]. It contains of interconnected nodes (neurons) that work together to

solve specific problems. Neural networks are used for tasks that involve pattern recognition,

classification, and prediction [53]. This makes them well-suited for detecting anomalies and attacks in

network traffic [51]. Basic components of neural networks are neurons (nodes), layer, weights and

biases, and activation functions. Neurons (nodes) are the fundamental units of a neural network that

recieve input, process it, and pass it to the next layer. Each neuron performs a weighted sum of its

input and applies an application function. The input layer is the first layer that receives the raw data

(e.g., network traffic features). Hidden layers are intermediate layers where the actual processing and

8

feature extraction occur. These layers can be one or many, and their depth often determines the

complexity of the model. The output layer is the final layer that produces the output (e.g.,

classification of network traffic as benign or malicious)[40]. Some parameters are adjusted during

training to minimize the error in prediction and weights and determine the strength of connections

between neurons, while biases provide additional flexibility in decision boundaries [58]. None-linear

functions are applied to the output of each neuron to introduce non-linearity into the model [5].

Common activation functions include Sigmoid, torch, and ReLU (Rectified Linear Unit) [43]. There

are different types of neural networks, including Feedforward Neural Networks (FNNs),

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Autoencoders.

FNNs are the simplest type of cycle. In other words, information moves in one direction- from input

to output. CNNs specialize in processing structured grid data like images. They use convolutional

layers to extract spatial features automatically[120]. In network security, CNNs can analyze raw

traffic data. RNNs are designed to handle sequential data by maintaining a memory of previous

inputs. They are useful for analyzing sequences of network events or logs. Auto encoders are a type

of neural network used for unsupervised learning of efficient coding [28]. Because they can

reconstruct inputs and spot deviations, they are especially helpful for anomaly detection.

Neural networks offer several advantages in pattern detection and anomaly detection. Neural

networks, especially deep learning models, can automatically extract and learn hierarchical features

from raw data without the need for manual feature engineering. This is particularly useful in network

security, where relevant features may not be easily identifiable [15].

2.4 Advantages of Neural Networks

Neural networks can model complex and non-linear relationships in data, which are often present in

sophisticated attack patterns and network traffic behaviors [30]. The capability enables them to detect

subtle and intricate anomalies that traditional linear models might miss. In addition, neural networks

generally offer higher accuracy and better detection rates for both known and unknown threats

compared to traditional machine learning methods. Neural networks can efficiently handle large-scale

datasets and high-dimensional data [19]. In the context of network security, this means they can

process vast amounts of network traffic data and identify anomalies or attack patterns in real-time

[56] . In Fig 4. the advantages of neural networks are briefly shown.

9

Figure 4:Advantages of Neural Networks in attack detection

2.5 An Overview of Network Attacks

Network attacks are deliberate attempts to compromise the integrity, confidentiality, or availability of

data and network resources. Common network attacks are:

1) Dos and DDoS attacks: these attacks aim to make a network resource unavailable to its

intended users by overwhelming it with a flood of illegitimate requests. DoS attack

originates from a single source, while DDoS attack originates from multiple compromised

systems, such as botnets. These attacks can lead to significant downtime and damage to

reputation [12][24][37].

2) Phishing and Spear-phishing: Social engineering attacks are designed to trick individuals

into providing sensitive information such as usernames, passwords, and credit card

numbers. In a phishing attack, generic emails sent to a large number of people. In spear

phishing attack, targeted attacks directed at a specific individuals or organizations. These

attacks aimed at compromising personal and financial information or potential authorized

access to system [55][35][42].

3) Man-in-the-Middle (MITM) attacks: attackers intercept and potentially alter

communications between two parties without their knowledge. Some well-known methods

that are used are eavesdropping and session hijacking. These attacks have large impact

such as data theft, session hijacking, and unauthorized access to sensitive information

[54].

10

4) Malware attacks: Malware is a malicious software designed to infiltrate, damage, or

disable computers, and networks. There are different types of malwares including viruses,

worms, trojans, ransomware, and spyware [6].

Network attacks are divers and continually evolving, posing significant threats to organizations and

individuals. Detecting network attacks is a complex and challenging task due to evolving cyber

threats and the sophistication of attackers. In figure 5, some key challenges in detecting network

attacks are shown.

Figure 5:Challenges in detecting network attacks

2.6 Neural Network Architectures

Designing a neural network architecture for network attack detection involves several considerations

to ensure the model can effectively identify and classify malicious activities. Neural network

architectures are used in detecting network attacks vary in complexity and application, leveraging

different types of normal networks to address the unique challenges posted by network security. In

table 4 several common and advanced neural network architectures that are used in detecting network

attacks is given.

11

Table 4: Common Neural Network Architectures

Name Structures Applications Advantages Limitations

1 FNNs Composed of an

input layer, one or

more hidden layers

and an output layer

with no cycles or

loops [14]

Basic intrusion

detection system

(IDS) where

simple patterns in

the data needed to

be identified

• Simplicity

• Speed

Requires significant

feature engineering

(They cannot

inherently capture

complex features)

2 CNNs Consist of

convolutional layers,

pooling layers, and

fully connected

layers [26]

Used for

processing and

analyzing data like

traffic data

represented in a

grid or image-like

format

• Can automatically

learn hierarchical

features from raw

data

• Useful for

detecting patterns

and anomalies in

new network data

log files

Require data to be

formatted

3 RNNs Designed for handle

sequential data with

loops that allow

information to

present

Ideal for

examining logs or

time series data

from network

traffic that contain

sequences of

network events

Can capture temporal

patterns in sequential

data

4 LSTMs A type of RNN Ideal for detecting

sophisticated

attacks by

analyzing long

sequences of

network data

• Can learn long-

term dependencies

and retain

information over

long period

• Suitable for

complex temporal

patterns in network

traffic

More complex and

computationally

intensive than simple

RNNs and FNNs

5 GRUs A variant of RN

similar to RSTMs

but with a simpler

structure having

feature gates

Used for similar

purposes as

LSTMs but with

potentially faster

training times

Faster to train and less

computationally

intensive

More complex than

basic RNNs and

FNNs

6 Autoencoders Consists of an

encoder that

compresses the input

data into a slower-

dimensional

representation and a

decoder that

reconstructs the

original data from

these representations

Anomaly detection • Can learn from

unlabeled data,

which is abundant

in network traffic

• Effective at

detecting

anomalies where

reconstruction

error is high

Prone to overfitting

7 GANs consists of two

neural networks that

are trained

concurrently: a

discriminator and a

Generating

Synthetic network

traffic to train

other models or for

detecting

• Can generate

realistic network

traffic for training

and testing

purpose

• Training GANs

can be

challenging due

to instability

12

generator. The

discriminator

attempts to discern

between real and

fake samples, while

the generator

attempts to produce

realistic data

samples.

anomalies by

identifying data

that discriminator

finds difficult to

classify.

• Effective in

detecting

anomalies

• Computationally

intensive

As it is obvious from table 4, each neural network architecture offers various strengths and

weaknesses for detecting network attacks. The choice of architecture depends on the specific

requirement of the detection systems such as type of data, complexity of attack patterns and the need

for real-time processing.

2.7 Neural Network Architecture Design Considerations

Designing a neural network for network attack detection involves several considerations and choices

regarding the architecture, the architecture, activation functions, train algorithms, and other

parameters. Network traffic data requires normalization or scaling to ensure that features have similar

ranges; categorical features such as protocol types or port numbers need to be encoded, typically one-

hot encoding or label encoding. Selecting relevant features from the raw data is crucial. This can

include packet size, time intervals, IP addresses, port numbers, and more. Regarding the architecture

design, the shape of the input layer is defined based on the preprocessed features. The number and

type of hidden layers depend on the complexity of the task and the amount of data. Layer type

(CNNs, RNNs, LSTMs, GRUs) is defined based on the characteristics and parameters such as

number of units, return sequences, number of filters, and so on. The other adjustments (such as

activation functions and evaluation metrics) can be made based on specific requirements and dataset

characteristics.

2.8 An Overview of Image Processing

Image processing involves the manipulation and analysis of images to extract useful information or

enhance their quality. It plays a fundamental role in computer vision, medical imaging, and graphic

design, with applications ranging from facial recognition to satellite imagery. An image is composed

of multiple channels, each representing a color or intensity level. For example, a typical RGB (Red,

Green, Blue) image has three channels: one for each primary color. By adjusting these channels,

images can be modified in terms of color balance, brightness, contrast, and more. Grayscale images,

13

on the other hand, have just one channel, representing shades of gray. Our main idea is to take

advantage of the concept of image channels. We can view network traffic as different layers and

apply image processing techniques to identify anomalies. This leads to easily manipulating network

traffics and extract anomalies. In the next chapter, we apply our method to detect DNS spoofing

attack anomalies in targeted network traffic and present the results.

14

CHAPTER 3

 DNS Spoofing Attack

3.1 An Overview of DNS Spoofing Attack

DNS cache poisoning (also known as DNS spoofing) is a type of cyber-attack where corrupt DNS

data is inspired into the DNS resolver’s cache, causing the name server to return an incorrect IP

address and deviating traffic to malicious site [36]. The attack threatens the integrity of DNS, which

is a critical component of the Internet infrastructure responsible for translating human readable

domain names into IP addresses that computers use on the network. In figure 6 key characteristics of

DNS cache poisoning attack is shown.

Figure 6:Key Characteristics of DNS Cache Poisoning Attack

3.2 Raw Data Collection

Raw data collection and generation are fundamental steps in the development of neural network

models for network attack detection. They involve gathering and creating data that represents network

15

activities, both benign and malicious. This data serves as the fundamental of training, validating and

testing machine learning algorithms. The data can be provided either by collecting or generating

where each has different methods. In figure 7 these methods are shown.

Figure 7: Data Collection and Generation Methods

Network traffic can be captured in real-time using tools such as Wireshark, tcpdump, and bro (now

Zech). Each packet traversing the network is monitored and recorded by these tools, which provide

detailed information about each one. Network devices, like routers, firewalls, and servers, generate

log files that contain records of network activities [25]. These logs can provide insight into

connection events, traffic flows, and detected anomalies. By analyzing these logs, researchers can

identify patterns and behaviors associated with both normal usage and malicious activities. Publicly

available datasets like KDD Cup 1999, DARPA intrusion, evaluation dataset, and CICIDS provide

labeled network traffic data for various attack scenarios [45].

Simulated attacks are one of the methods used to generate data. Simulating network attacks in

controlled environments allows for the generation of synthetic data [52]. These simulations can

include various attacks, such as DDoS, phishing, and malware infections. In addition, Simulation

provides the advantage of generating labeled data when the nature of each data point (normal traffic

vs. specific traffic) is known [48]. Automated tools can generate large volumes of network traffic that

include both normal and malicious activities [59]. These tools help to create comprehensive datasets

that cover a wide range of scenarios, ensuring that the machine learning models are exposed to

diverse types of network activities [49]. Data augmentation techniques involve creating new training

examples by modifying existing data. These techniques can include duplicating samples or making

16

slight alterations to the data. High-quality data with minimal noise and error is essential for training

reliable neural network models. Data preprocessing steps, such as cleaning and normalization, help

improve data quality [8]. Additionally, the dataset should be representative of the real-world

environment where the model will be deployed, including a balanced mix of both normal and

malicious activities [39].

For our case study, we used protocol fuzzing for data generation. Web protocol fuzzing can generate

large variety of malicious network packets at a fast speed. In this method, all are labeled as malicious

because they are generated from a desired network attack. In our case, all data generated and stored in

order to create the dataset.

3.3 Labeling DNS Sessions

Labeling DNS sessions involves categorizing and tagging DNS traffic to distinguish between

different types of network activities. This process is crucial for various network security tasks

including monitoring, anomaly detection, and forensic analysis [23]. DNS session labeling enables

more effective tracking of network activity by categorizing [57]. In addition, facilitates the

identification of anomalies and potential security threats by comparing current traffic against labeled

data [31]. Labeling DNS sessions has some challenges. DNS traffic can be volumes, requiring

efficient methods to label and analyze large dataset attack patterns that evolve over time,

necessitating continuous updates to labeling criteria and methods. Ensuring high accuracy in labeling

to avoid false positives and negatives is another challenge in labeling DNS sessions.

In our case study, the malicious and benign raw data have already been separated during protocol

fuzzing. As a result, we are not required to do another extra process.

3.4 Feature Extraction and Data Sample Representation

Feature extraction and data sample representation are crucial steps in the process of detecting network

attacks, such as DNS cache poisoning. These steps involve transforming raw network data into a

structured format that can be used as input for machine learning models. Feature extractions involve

selecting and transforming raw data into meaningful attributes that can be used by machine learning

algorithms. For network attack detection, features can be derived from various sources, such as

network traffic, logs, and system events [32]. In Figure 8, key steps in feature extraction are shown.

17

Figure 8: Key Steps in Feature Extraction

Data sample representation involves organizing the extracted features into a format suitable for input

into machine learning models. Data samples can be represented in a tabular format, sequential format,

or graph-based format. Each representation has its own characteristics that make it suitable for each

model. Sequential formats are suitable for models like RNNs and LSTMs, where data is represented

as sequences of events. Graph-based representation is useful for GNNs and detecting complex attack

patterns.

In our case study, 32 bytes are chosen from every DNS packet instead of a whole packet. These 32

bytes include IP layer, UDP layer, and part of a DNS layer. After the packet processing, every packet

is represented as fixed-length sequences of 32 integer numbers ranging from 0 to 255 (a 32-integer

vector). For the packets with variable length, we applied sliding window to convert it to a fixed-

length sequences.

In fig 9, the python code for applying window sliding is shown.

Figure 9: Python code for applying window sliding

3.5 Dataset Construction

This section involves several steps to ensure collected data is relevant, accurate, and useful for the

intended analysis. In figure 9 general is covered.

def window_sliding(x_list, window_size, window_step):

 x = []

 For i in range(len(x_list)):

 Line = x_list[i]

 n = len(line)

 for j in range (0 , n – window_size + 1, window_step)

 if j+window_size <= len(line)

 x.append(line[j:j+window_size])

 else:

 x.append(line[n-window_size:n])

 return np.array(x)

18

Figure 10: Data construction Process

Regarding the DNS cache poisoning attack, the dataset includes real-network traffic captured over a

specific period. This ensures the data represents actual usage patterns and potential attack sessions. In

addition to real traffic, simulated attack scenarios are generated and included in the dataset. This

helps to create a comprehensive dataset that includes various attack patterns and methods. Key

features that are selected include attributes like source and destination IP addresses, DNS query types,

and response time. Each entry in the dataset is labeled as either normal traffic or attack traffic. The

data undergoes a preprocessing step such as normalization and noise filtering. By doing this, the data

fed into the machine-learning models is made sure to be clean and well-structured. The data is split

into training, validation, and test sets to allow for robust model training and evaluation. This split

helps in assessing the model’s performance on unseen data.

3.6 Model Architecture

The model architecture focuses on the details of the structure and components of the neural network

used for detecting network attacks, particularly focusing on the choice of layers, activities, functions,

and other design patterns. The model architecture is crucial because the effectiveness of a neural

network heavily relies on how well its architecture is suited to the specific task. The purpose of the

input layer is to receive the raw input data. The purpose of hidden layers is to process and transform

the input data through various computations to extract meaningful patterns. This combination of

layers and patterns helps the model effectively learn to distinguish between normal and malicious

network traffic, addressing the specific challenges posed by network attack detection. In fig 11 our

purposed construction is shown.

Figure 11: Proposed Architecture

19

3.7 Parameter Tuning

The process of parameter tuning involves altering the hyperparameters of neural network models to

enhance their ability to detect network attacks [13]. Common hyperparameters include learning rate,

batch size, number of epochs, number of layers/neurons, dropout rate, and activation functions. The

learning rate controls the step size during the gradient descent optimization. A small learning rate

convergence with a large learning rate can cause the model to converge too quickly. Batch size

determines the number of training samples used to calculate the gradient descent in each iteration.

Smaller batch sizes can lead to noisy updates, while layer batch sizes provide more stable updates but

require more memory. The number of epochs is a measurement of how many times a complete pass

through the entire training dataset has been completed. More epochs can improve learning but may

also increase the risk of overfitting. An important issue is adjusting the depth (number of layers) and

width (number of neurons per layer) of the neural network to find a suitable architecture that captures

the complexity of data without overfitting [50]. Drop rate is a regularization technique to prevent

overfitting by randomly dropping units during training [21]. The drop rate specifies the proportion of

units to drop. Activation functions such as ReLU, sigmoid, or Tanh are applied to each neuron's

output [40]. The choice of activation functions affects the learning dynamics and model performance

[21]. Different tunning methods can be applied. Exhaustive search over a predefined set of

hyperparameters is called Grid search [54]. It evaluates every combination, which can be

computationally expensive but thorough. In the random search tuning method, randomly sampled

hyperparameters from specific distributions are more efficient than grid search and often find good

hyperparameters with fewer evaluations. Bayesian optimization uses a probabilistic model to predict

the performance of different hyperparameter settings and choose the next set to evaluate [2]. Methods

like hypergradient descent adjust hyperparameters based on their gradients, similar to how model

parameters are optimized. Either model tuning or automated tools can be used for hyperparameter

tuning [29]. In our case study set corresponds to the sliding window, and the number of units in layers

are considered as hyper parameters.

3.8 Model Deployment

The deployment of a model for DNS attack detection involves integrating the trained neural network

into a live environment where it can monitor and analyze real-time DNS traffic. In fig 10, Python

code for model building is shown.

20

Figure 12: Python code for Model building

 3.9 Evaluation Results

This section presents the findings from testing and validating the proposed methods or systems

against established metrics. Fig 11 Covers aspects in the context of DNS cache poisoning attack

detection.

Figure 9:Performance Metrics

def create_network(input_size, layer_dims, filter_sizes, dropout_prob):

input_layer = tf.keras.layers.Input(shape=(input_size, 32, 8), name='InputLayer')

 x = tf.keras.layers.Conv2D(filters=layer_dims[0], kernel_size=filter_sizes[0],

padding='same', activation='relu', name='ConvBlock1')(input_layer)

 x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2),

 padding='same', name='PoolBlock1')(x)

 x = tf.keras.layers.Conv2D(filters=layer_dims[1], kernel_size=filter_sizes[1],

 padding='same', activation='relu', name='ConvBlock2')(x)

 x = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2),

 padding='same', name='PoolBlock2')(x)

x = tf.keras.layers.Flatten(name='FlattenLayer')(x)

x = tf.keras.layers.Dense(layer_dims[2], activation='relu', name='DenseLayer')(x)

x = tf.keras.layers.Dropout(rate=dropout_prob, name='DropoutLayer')(x)

output_layer = tf.keras.layers.Dense(2, activation='softmax',

name='OutputLayer')(x)

model = tf.keras.models.Model(inputs=input_layer, outputs=output_layer,

name='NetworkModel')

return model

21

Accuracy is one of the performance metrics. This metric shows the ratio of the number of correct predictions to

the total number of predictions. Recall metric, answers the question “of all instances that were actually

positive, how many were predicted correctly?”. On the hand, precision metric defines “Of all insurances that

were predicted as positive, how many were actually positive?”. F1 score metric combines precision and recall

into a single metric [41]. Based on our proposed architecture, and evaluation on dataset, results are shown in

table 5.

Table 5:Extracted Results

Data Set Accuracy Precision Detection rate F1 Score

Training 0.9888 0.9755 0.9756 0.9765

Test 0.9766 0.9661 0.9891 0.9971

These results illustrate how well our model performs according to the aforementioned metrics, and provide

insights into areas where the model excels or may need improvement. The comprehensive evaluation helps in

understanding the model’s strengths and weaknesses, guiding further refinements and optimizations.

22

CHAPTER 4

CONCLUSION

In this document, we introduced the idea of taking advantage of the concept of image channels and

employ an image processing technique in order to find network anomalies. we have evaluated the

performance of our proposed architecture using various metrics to ensure a comprehensive

assessment. Accuracy, recall, precision, and F1 score have been utilized to gauge the effectiveness of

our model in making correct predictions. The presented results demonstrate the effectiveness of our

model based on these metrics. Our analysis reveals that the proposed architecture performs well in

terms of accuracy and precision, while also maintaining a strong balance between recall and precision

as indicated by the F1 score. However, the detailed evaluation also uncovers areas for potential

improvement. Overall, the comprehensive assessment has validated the robustness of our proposed

architecture while providing valuable insights for future refinements. This evaluation sets the stage

for continued development and optimization of the model, with the goal of enhancing its performance

and applicability in real-world scenarios.

23

REFERENCES

[1] Blin, K., Shaw, S., Kloosterman, A. M., Charlop-Powers, Z., Wezel, G. P., Medema, M., &

Weber, T. (2021). antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic

Acids Research, 49, W29-W35.

[2] Brochu, Eric, Vlad M. Cora, and Nando De Freitas. "A tutorial on Bayesian optimization of

expensive cost functions, with application to active user modeling and hierarchical reinforcement

learning." arXiv preprint arXiv:1012.2599 (2010).

[3] Baevski, Alexei, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. "wav2vec 2.0: A

framework for self-supervised learning of speech representations." Advances in neural information

processing systems 33 (2020): 12449-12460.

[4] Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... Stoyanov,

V. (2019). Unsupervised Cross-lingual Representation Learning at Scale. Annual Meeting of the

Association for Computational Linguistics.

[5] Cheng, X., Chen, Y., & Sra, S. (2023). Transformers Implement Functional Gradient Descent to

Learn Non-Linear Functions In Context. ArXiv, abs/2312.06528.

[6] Chai, Yuhan, Lei Du, Jing Qiu, Lihua Yin, and Zhihong Tian. "Dynamic prototype network based

on sample adaptation for few-shot malware detection." IEEE Transactions on Knowledge and Data

Engineering 35, no. 5 (2022): 4754-4766.

[7] Chen, Zhaomin, Chai Kiat Yeo, Bu Sung Lee, and Chiew Tong Lau. "Autoencoder-based network

anomaly detection." In 2018 Wireless telecommunications symposium (WTS), pp. 1-5. IEEE, 2018.

[8] Chen, Shifu. "Ultrafast one‐pass FASTQ data preprocessing, quality control, and deduplication

using fastp." Imeta 2, no. 2 (2023): e107.

[9] Duan, Ranjie, Xiaofeng Mao, A. Kai Qin, Yuefeng Chen, Shaokai Ye, Yuan He, and Yun Yang.

"Adversarial laser beam: Effective physical-world attack to dnns in a blink." In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16062-16071. 2021.

[10] Deng, Li, and Dong Yu. "Deep learning: methods and applications." Foundations and trends® in

signal processing 7, no. 3–4 (2014): 197-387.

[11] Dalalah, Doraid, and Osama MA Dalalah. "The false positives and false negatives of generative

AI detection tools in education and academic research: The case of ChatGPT." The International

Journal of Management Education 21, no. 2 (2023): 100822.

[12] Du, Hongyang, Jiacheng Wang, Dusit Niyato, Jiawen Kang, Zehui Xiong, Xuemin Shen, and

Dong In Kim. "Exploring attention-aware network resource allocation for customized metaverse

services." IEEE Network 37, no. 6 (2022): 166-175.

[13] Eimer, Theresa, Marius Lindauer, and Roberta Raileanu. "Hyperparameters in reinforcement

learning and how to tune them." In International Conference on Machine Learning, pp. 9104-9149.

PMLR, 2023.

[14] Fei, Juntao, and Cheng Lu. "Adaptive sliding mode control of dynamic systems using double

loop recurrent neural network structure." IEEE transactions on neural networks and learning

systems 29.4 (2017): 1275-1286.

[15] Guo, Hongzhi, Jingyi Li, Jiajia Liu, Na Tian, and Nei Kato. "A survey on space-air-ground-sea

integrated network security in 6G." IEEE Communications Surveys & Tutorials 24, no. 1 (2021): 53-

87.

[16] Hassan, Mohammad Mehedi, Abdu Gumaei, Ahmed Alsanad, Majed Alrubaian, and Giancarlo

Fortino. "A hybrid deep learning model for efficient intrusion detection in big data environment."

Information Sciences 513 (2020): 386-396.

[17] Heramil, James Aaron, Kyle Dumbrique, Mariah Rocita Mirarza, Lionel Kerwin Ejorango,

24

Roselle Wednesday Gardon, and Lorena Rabago. "Threatlocke: An Anomaly Based Detection

Model." In 2023 8th International Conference on Information Technology and Digital Applications

(ICITDA), pp. 1-6. IEEE, 2023.

[18] Han, Song, Jeff Pool, John Tran, and William Dally. "Learning both weights and connections for

efficient neural network." Advances in neural information processing systems 28 (2015).

[19] Hebart, Martin N., Oliver Contier, Lina Teichmann, Adam H. Rockter, Charles Y. Zheng, Alexis

Kidder, Anna Corriveau, Maryam Vaziri-Pashkam, and Chris I. Baker. "THINGS-data, a multimodal

collection of large-scale datasets for investigating object representations in human brain and

behavior." Elife 12 (2023): e82580.

[20] Howard, Andrew G. "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

Applications." arXiv preprint arXiv:1704.04861 (2017).

[21] Hussain, Aamal Abbas, Francesco Belardinelli, and Georgios Piliouras. "Asymptotic

convergence and performance of multi-agent q-learning dynamics." arXiv preprint arXiv:2301.09619

(2023).

[22] Ilić, David, and Gilles E. Gignac. "Evidence of interrelated cognitive-like capabilities in large

language models: Indications of artificial general intelligence or achievement?." Intelligence 106

(2024): 101858.

[23] Jacobs, Arthur S., Roman Beltiukov, Walter Willinger, Ronaldo A. Ferreira, Arpit Gupta, and

Lisandro Z. Granville. "AI/ML for network security: The emperor has no clothes." In Proceedings of

the 2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 1537-1551.

2022.

[24] Kolias, Constantinos, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas. "DDoS in the

IoT: Mirai and other botnets." Computer 50, no. 7 (2017): 80-84.

[25] Karlsen, Egil, Rafael Copstein, Xiao Luo, Jeff Schwartzentruber, Bradley Niblett, Andrew

Johnston, Malcolm I. Heywood, and Nur Zincir-Heywood. "Exploring semantic vs. syntactic features

for unsupervised learning on application log files." In 2023 7th Cyber security in networking

conference (CSNet), pp. 219-225. IEEE, 2023.

[26] Ketkar, Nikhil, et al. "Convolutional neural networks." Deep learning with Python: learn best

practices of deep learning models with PyTorch (2021): 197-242.

[27] Liu, Ling. "Computational morphology with neural network approaches." arXiv preprint

arXiv:2105.09404 (2021).

[28] Li, Xiang, Tiandi Ye, Caihua Shan, Dongsheng Li, and Ming Gao. "Seegera: Self-supervised

semi-implicit graph variational auto-encoders with masking." In Proceedings of the ACM web

conference 2023, pp. 143-153. 2023.

[29] Lian, D., Zhou, D., Feng, J., & Wang, X. (2022). Scaling & Shifting Your Features: A New

Baseline for Efficient Model Tuning. Neural Information Processing Systems.

[30] Li, Liam, and Ameet Talwalkar. "Random search and reproducibility for neural architecture

search." In Uncertainty in artificial intelligence, pp. 367-377. PMLR, 2020.

[31] Liu, Jiaqi, Guoyang Xie, Jinbao Wang, Shangnian Li, Chengjie Wang, Feng Zheng, and Yaochu

Jin. "Deep industrial image anomaly detection: A survey." Machine Intelligence Research 21, no. 1

(2024): 104-135.

[32] Lu, Siyu, Yueming Ding, Mingzhe Liu, Zhengtong Yin, Lirong Yin, and Wenfeng Zheng.

"Multiscale feature extraction and fusion of image and text in VQA." International Journal of

Computational Intelligence Systems 16, no. 1 (2023): 54.

[33] Madry, Aleksander, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.

"Towards deep learning models resistant to adversarial attacks." arXiv preprint arXiv:1706.06083

(2017).

[34] Mohammadpour, Leila, Teck Chaw Ling, Chee Sun Liew, and Alihossein Aryanfar. "A survey

of CNN-based network intrusion detection." Applied Sciences 12, no. 16 (2022): 8162.

[35] Nielsen, Kurt, and Helle Betina Kristensen. "End-to-end mapping of a spear-phishing attack on

HEI in EU." Proceedings of the European Univer 78 (2021): 89-97.

[36] Man, Keyu, Xin'an Zhou, and Zhiyun Qian. "Dns cache poisoning attack: Resurrections with

25

side channels." In Proceedings of the 2021 ACM SIGSAC Conference on Computer and

Communications Security, pp. 3400-3414. 2021.

[37] Panda, Chakradhara, and Tilak Raj Singh. "ML-based vehicle downtime reduction: A case of air

compressor failure detection." Engineering Applications of Artificial Intelligence 122 (2023):

106031.

[38] Rathee, Ashish, Parveen Malik, and Manoj Kumar Parida. "Network Intrusion Detection System

using Deep Learning Techniques." 2023 International Conference on Communication, Circuits, and

Systems (IC3S). IEEE, 2023.

[39] Raza, Ali, Kashif Munir, Mubarak S. Almutairi, and Rukhshanda Sehar. "Novel class probability

features for optimizing network attack detection with machine learning." IEEE Access (2023).

[40] Ramachandran, Prajit, Barret Zoph, and Quoc V. Le. "Searching for activation functions." arXiv

preprint arXiv:1710.05941 (2017).

[41] Roth, Karsten, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter

Gehler. "Towards total recall in industrial anomaly detection." In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pp. 14318-14328. 2022.

[42] Sabadash, Ivanna, Nestor Dumanskyi, and Igor Korobiichuk. "Methods and Means of

Identifying Fraudulent Websites." In COAPSN, pp. 177-186. 2020.

[43] Sitzmann, Vincent, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein.

"Implicit neural representations with periodic activation functions." Advances in neural information

processing systems 33 (2020): 7462-7473.

[44] Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory recurrent neural network

architectures for large scale acoustic modeling. In Interspeech (pp. 338-342).

[45] Shah, B., & Trivedi, B. (2015). Reducing Features of KDD CUP 1999 Dataset for Anomaly

Detection Using Back Propagation Neural Network. In 2015 Fifth International Conference on

Advanced Computing & Communication Technologies (pp. 247-251).

[46] Sohi, Soroush M., Jean-Pierre Seifert, and Fatemeh Ganji. "RNNIDS: Enhancing network

intrusion detection systems through deep learning." Computers & Security 102 (2021): 102151.

[47] Szynkiewicz, Paweł. "Signature-based detection of botnet DDoS attacks." In Cybersecurity of

Digital Service Chains: Challenges, Methodologies, and Tools, pp. 120-135. Cham: Springer

International Publishing, 2022.

[48] Shum, KaShun, Shizhe Diao, and Tong Zhang. "Automatic prompt augmentation and selection

with chain-of-thought from labeled data." arXiv preprint arXiv:2302.12822 (2023).

[49] Sivanathan, Arunan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford, Chamith

Wijenayake, Arun Vishwanath, and Vijay Sivaraman. "Classifying IoT devices in smart

environments using network traffic characteristics." IEEE Transactions on Mobile Computing 18, no.

8 (2018): 1745-1759.

[50] Shi, Wenzhe, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P. Aitken, Rob Bishop,

Daniel Rueckert, and Zehan Wang. "Real-time single image and video super-resolution using an

efficient sub-pixel convolutional neural network." In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 1874-1883. 2016.

[51] Sivanathan, Arunan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford, Chamith

Wijenayake, Arun Vishwanath, and Vijay Sivaraman. "Classifying IoT devices in smart

environments using network traffic characteristics." IEEE Transactions on Mobile Computing 18, no.

8 (2018): 1745-1759.

[52] Tang, Ruixiang, Xiaotian Han, Xiaoqian Jiang, and Xia Hu. "Does synthetic data generation of

llms help clinical text mining?." arXiv preprint arXiv:2303.04360 (2023).

[53] Takeuchi, Osamu, and Shizuo Akira. "Pattern recognition receptors and inflammation." Cell 140,

no. 6 (2010): 805-820.

[54] Yao, Yu, Junhui Zhao, Zeqing Li, Xu Cheng, and Lenan Wu. "Jamming and eavesdropping

defense scheme based on deep reinforcement learning in autonomous vehicle networks." IEEE

Transactions on Information Forensics and Security 18 (2023): 1211-1224.

[55] Wang, Yanbin, Wenrui Ma, Haitao Xu, Yiwei Liu, and Peng Yin. "A lightweight multi-view

26

learning approach for phishing attack detection using transformer with mixture of experts." Applied

Sciences 13, no. 13 (2023): 7429.

[56] Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. "YOLOv7: Trainable bag-

of-freebies sets new state-of-the-art for real-time object detectors." In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pp. 7464-7475. 2023.

[57] Yang, Zhao, Ye Hongzhi, Li Lingzi, Huang Cheng, and Zhang Tao. "Detecting DNS tunnels

using session behavior and random forest method." In 2020 IEEE Fifth International Conference on

Data Science in Cyberspace (DSC), pp. 45-52. IEEE, 2020.

[58] Zhou, Hengyi, Longjun Liu, Haonan Zhang, Hongyi He, and Nanning Zheng. "CMB: A Novel

Structural Re-parameterization Block without Extra Training Parameters." In 2022 International Joint

Conference on Neural Networks (IJCNN), pp. 1-9. IEEE, 2022.

[59] Zivanov, Jasenko, Takanori Nakane, Björn O. Forsberg, Dari Kimanius, Wim JH Hagen, Erik

Lindahl, and Sjors HW Scheres. "New tools for automated high-resolution cryo-EM structure

determination in RELION-3." elife 7 (2018): e42166.

